Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy.

نویسندگان

  • Sara E Howden
  • Athurva Gore
  • Zhe Li
  • Ho-Lim Fung
  • Benjamin S Nisler
  • Jeff Nie
  • Goukai Chen
  • Brian E McIntosh
  • Daniel R Gulbranson
  • Nicole R Diol
  • Seth M Taapken
  • David T Vereide
  • Karen Dyer Montgomery
  • Kun Zhang
  • David M Gamm
  • James A Thomson
چکیده

Gene-corrected patient-specific induced pluripotent stem (iPS) cells offer a unique approach to gene therapy. Here, we begin to assess whether the mutational load acquired during gene correction of iPS cells is compatible with use in the treatment of genetic causes of retinal degenerative disease. We isolated iPS cells free of transgene sequences from a patient with gyrate atrophy caused by a point mutation in the gene encoding ornithine-δ-aminotransferase (OAT) and used homologous recombination to correct the genetic defect. Cytogenetic analysis, array comparative genomic hybridization (aCGH), and exome sequencing were performed to assess the genomic integrity of an iPS cell line after three sequential clonal events: initial reprogramming, gene targeting, and subsequent removal of a selection cassette. No abnormalities were detected after standard G-band metaphase analysis. However, aCGH and exome sequencing identified two deletions, one amplification, and nine mutations in protein coding regions in the initial iPS cell clone. Except for the targeted correction of the single nucleotide in the OAT locus and a single synonymous base-pair change, no additional mutations or copy number variation were identified in iPS cells after the two subsequent clonal events. These findings confirm that iPS cells themselves may carry a significant mutational load at initial isolation, but that the clonal events and prolonged cultured required for correction of a genetic defect can be accomplished without a substantial increase in mutational burden.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy

Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms.  Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...

متن کامل

سلول‏های بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری

Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...

متن کامل

Using Stem Cells to Model Diseases of the Outer Retina

Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE). It is one of the leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of induced pluripotent stem cell (IPSC)-derived retinal cells and tissues from individuals with retinal degeneration is a rapidly evolving technology that holds a great potential ...

متن کامل

A rare ophthalmologic disorder: Gyrate atrophy with sparse hair

Gyrate atrophy (GA) is a rare, progressive metabolic choroid and retinal degeneration that results from a deficiency of the pyridoxal phosphate-dependent mitochondrial matrix enzyme ornithine aminotransferase. Here, we report the case of a 40-yearold woman who presented with a gradual decline in visual acuity since puberty, along with a history of high myopia and cataract surgery. She was admit...

متن کامل

Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications

Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 16  شماره 

صفحات  -

تاریخ انتشار 2011